March 22, 2025

Health Minds

Nourishing Minds, Elevating Health

Mitigating the environmental effects of healthcare: the role of the endocrinologist

Mitigating the environmental effects of healthcare: the role of the endocrinologist
  • Richardson, K. et al. Earth beyond six of nine planetary boundaries. Sci. Adv. 9, eadh2458 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • IPCC Climate Change 2023: Synthesis Report (eds Core Writing Team, Lee, H. & Romero, J.) (IPCC, 2023).

  • Romanello, M. et al. The 2023 report of the Lancet Countdown on health and climate change: the imperative for a health-centred response in a world facing irreversible harms. Lancet 402, 2346–2394 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Romanello, M. et al. The 2021 report of the Lancet Countdown on health and climate change: code red for a healthy future. Lancet 398, 1619–1662 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Ambient (outdoor) air pollution. World Health Organization (2024).

  • Anderson, J. O., Thundiyil, J. G. & Stolbach, A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J. Med. Toxicol. 8, 166–175 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lenzen, M. et al. The environmental footprint of health care: a global assessment. Lancet Planet. Health 4, e271–e279 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Grand View Research. Medical plastics market size, share a trends analysis report by application (medical device packaging, medical components, orthopedic implant packaging), and segment forecasts. 2019–2025. Grand View Research (2019).

  • Landrigan, P. J. et al. The Minderoo–Monaco Commission on plastics and human health. Ann. Glob. Health 89, 23 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brighton and Sussex Medical School, Centre for Sustainable Healthcare, and UK Health Alliance on Climate Change. Green Surgery: Reducing the Environmental Impact of Surgical Care (2023).

  • White, S. M. et al. Principles of environmentally-sustainable anaesthesia: a global consensus statement from the World Federation of Societies of Anaesthesiologists. Anaesthesia 77, 201–212 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilkinson, A. & Woodcock, A. The environmental impact of inhalers for asthma: a green challenge and a golden opportunity. Br. J. Clin. Pharmacol. 88, 3016–3022 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Chung, J. W. & Meltzer, D. O. Estimate of the carbon footprint of the US health care sector. JAMA 302, 1970–1972 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tennison, I. et al. Health care’s response to climate change: a carbon footprint assessment of the NHS in England. Lancet Planet. Health 5, e84–e92 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, R. The carbon footprint of the Chinese health-care system: an environmentally extended input–output and structural path analysis study. Lancet Planet. Health 3, e413–e419 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Malik, A., Lenzen, M., McAlister, S. & McGain, F. The carbon footprint of Australian health care. Lancet Planet. Health 2, e27–e35 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Nansai, K., Fry, J., Malik, A., Takayanagi, W. & Kondo, N. Carbon footprint of Japanese health care services from 2011 to 2015. Resour. Conserv. Recycling 152, 104525 (2020).

    Article 

    Google Scholar 

  • Marsh, K., Ganz, M., Nørtoft, E., Lund, N. & Graff-Zivin, J. Incorporating environmental outcomes into a health economic model. Int. J. Technol. Assess. Health Care 32, 400–406 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Fordham, R. et al. Effective diabetes complication management is a step toward a carbon-efficient planet: an economic modeling study. BMJ Open. Diabetes Res. Care 8, e001017 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bhutta, M. F. Our over-reliance on single-use equipment in the operating theatre is misguided, irrational and harming our planet. Ann. R. Coll. Surg. Engl. 103, 709–712 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • MacNeill, A. J. et al. Transforming the medical device industry: road map to a circular economy. Health Aff. 39, 2088–2097 (2020).

    Article 

    Google Scholar 

  • Sridharan, S., Kumar, M., Singh, L., Bolan, N. S. & Saha, M. Microplastics as an emerging source of particulate air pollution: a critical review. J. Hazard. Mater. 418, 126245 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Karapetrova, A. et al. Exploring microplastic distribution in Western North American snow. J. Hazard. Mater. 480, 136126 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vivekanand, A. C., Mohapatra, S. & Tyagi, V. K. Microplastics in aquatic environment: challenges and perspectives. Chemosphere 282, 131151 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Surendran, U., Jayakumar, M., Raja, P., Gopinath, G. & Chellam, P. V. Microplastics in terrestrial ecosystem: sources and migration in soil environment. Chemosphere 318, 137946 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pabortsava, K. & Lampitt, R. S. High concentrations of plastic hidden beneath the surface of the Atlantic Ocean. Nat. Commun. 11, 4073 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Massoud, M. A., Abdallah, C., Merhbi, F., Khoury, R. & Ghanem, R. Development and application of a prioritization and rehabilitation decision support tool for uncontrolled waste disposal sites in developing countries. Integr. Environ. Assess. Manag. 19, 436–445 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Chisholm, J. M. et al. Sustainable waste management of medical waste in African developing countries: a narrative review. Waste Manag. Res. 39, 1149–1163 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Adeniran, A. A., Ayesu-Koranteng, E. & Shakantu, W. A review of the literature on the environmental and health impact of plastic waste pollutants in sub-Saharan Africa. Pollutants 2, 531–545 (2022).

    Article 

    Google Scholar 

  • Martuzzi, M., Mitis, F. & Forastiere, F. Inequalities, inequities, environmental justice in waste management and health. Eur. J. Public. Health 20, 21–26 (2010).

    Article 
    PubMed 

    Google Scholar 

  • La Merrill, M. A. et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat. Rev. Endocrinol. 16, 45–57 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Gore, A. C. et al. EDC-2: the endocrine society’s second scientific statement on endocrine-disrupting chemicals. Endocr. Rev. 36, E1–e150 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Padmanabhan, V., Sarma, H. N., Savabieasfahani, M., Steckler, T. L. & Veiga-Lopez, A. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: native steroids vs. environmental steroid receptor modulators. Int. J. Androl. 33, 394–404 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Woodruff, T. J. Health effects of fossil fuel-derived endocrine disruptors. N. Engl. J. Med. 390, 922–933 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ghassabian, A. & Trasande, L. Disruption in thyroid signaling pathway: a mechanism for the effect of endocrine-disrupting chemicals on child neurodevelopment. Front. Endocrinol. 9, 204 (2018).

    Article 

    Google Scholar 

  • Heindel, J. J. et al. NIEHS/FDA CLARITY-BPA research program update. Reprod. Toxicol. 58, 33–44 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hao, C., Cheng, X., Xia, H. & Ma, X. The endocrine disruptor mono-(2-ethylhexyl) phthalate promotes adipocyte differentiation and induces obesity in mice. Biosci. Rep. 32, 619–629 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ziv-Gal, A., Wang, W., Zhou, C. & Flaws, J. A. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol. Appl. Pharmacol. 284, 354–362 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Harding, C., Van Loon, J., Moons, I., De Win, G. & Du Bois, E. Design opportunities to reduce waste in operating rooms. Sustainability 13, 2207 (2021).

    Article 

    Google Scholar 

  • Zimmermann, L. et al. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 55, 11814–11823 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chang, W. H., Herianto, S., Lee, C. C., Hung, H. & Chen, H. L. The effects of phthalate ester exposure on human health: a review. Sci. Total Environ. 786, 147371 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ma, Y. et al. The adverse health effects of bisphenol A and related toxicity mechanisms. Environ. Res. 176, 108575 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Trasande, L. et al. Estimating burden and disease costs of exposure to endocrine-disrupting chemicals in the European union. J. Clin. Endocrinol. Metab. 100, 1245–1255 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jacobson, M. H., Woodward, M., Bao, W., Liu, B. & Trasande, L. Urinary bisphenols and obesity prevalence among US children and adolescents. J. Endocr. Soc. 3, 1715–1726 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mallozzi, M., Leone, C., Manurita, F., Bellati, F. & Caserta, D. Endocrine disrupting chemicals and endometrial cancer: an overview of recent laboratory evidence and epidemiological studies. Int. J. Environ. Res. Public. Health 14, 334 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Environment and Climate Change Canada, Health Canada. Screening assessment — phthalate substance grouping. Environment and Climate Change Canada (2020).

  • Rowdhwal, S. S. S. & Chen, J. Toxic effects of di-2-ethylhexyl phthalate: an overview. Biomed. Res. Int. 2018, 1750368 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koch, H. M., Preuss, R. & Angerer, J. Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure — an update and latest results. Int. J. Androl. 29, 155–165 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Šimunović, A., Tomić, S. & Kranjčec, K. Medical devices as a source of phthalate exposure: a review of current knowledge and alternative solutions. Arh. Hig. Rada Toksikol. 73, 179–190 (2022).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Fong, J. P., Lee, F. J., Lu, I. S., Uang, S. N. & Lee, C. C. Estimating the contribution of inhalation exposure to di-2-ethylhexyl phthalate (DEHP) for PVC production workers, using personal air sampling and urinary metabolite monitoring. Int. J. Hyg. Environ. Health 217, 102–109 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Saleh, I. et al. The cumulative risk assessment of phthalates exposure in preterm neonates. Int. J. Hyg. Environ. Health 248, 114112 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • European Commission: Directorate-General for Health and Food Safety. Opinion on the safety of medical devices containing DEHP-plasticized PVC or other plasticizers on neonates and other groups possibly at risk (2015 update). European Commission (2016).

  • Hauser, R. et al. Urinary phthalate metabolite concentrations and reproductive outcomes among women undergoing in vitro fertilization: results from the EARTH study. Environ. Health Perspect. 124, 831–839 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Al-Saleh, I. et al. The relationships between urinary phthalate metabolites, reproductive hormones and semen parameters in men attending in vitro fertilization clinic. Sci. Total Environ. 658, 982–995 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhang, X., Flaws, J. A., Spinella, M. J. & Irudayaraj, J. The relationship between typical environmental endocrine disruptors and kidney disease. Toxics 11, 32 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Martinez-Arguelles, D. B. & Papadopoulos, V. Mechanisms mediating environmental chemical-induced endocrine disruption in the adrenal gland. Front. Endocrinol. 6, 29 (2015).

    Article 

    Google Scholar 

  • Zhang, Y., Lyu, L., Tao, Y., Ju, H. & Chen, J. Health risks of phthalates: a review of immunotoxicity. Environ. Pollut. 313, 120173 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Y. et al. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: a critical review. Environ. Pollut. 316, 120673 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Beg, M. A. & Sheikh, I. A. Endocrine disruption: structural interactions of androgen receptor against di(2-ethylhexyl) phthalate and its metabolites. Toxics 8, 115 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rouiller-Fabre, V. et al. Nuclear receptors and endocrine disruptors in fetal and neonatal testes: a gapped landscape. Front. Endocrinol. 6, 58 (2015).

    Article 

    Google Scholar 

  • Wang, W., Craig, Z. R., Basavarajappa, M. S., Gupta, R. K. & Flaws, J. A. Di(2-ethylhexyl) phthalate inhibits growth of mouse ovarian antral follicles through an oxidative stress pathway. Toxicol. Appl. Pharmacol. 258, 288–295 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Corton, J. C. & Lapinskas, P. J. Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol. Sci. 83, 4–17 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ren, H. et al. Characterization of peroxisome proliferator-activated receptor α — independent effects of PPARα activators in the rodent liver: di-(2-ethylhexyl) phthalate also activates the constitutive-activated receptor. Toxicol. Sci. 113, 45–59 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jiang, J., Ma, L., Yuan, L., Wang, X. & Zhang, W. Study on developmental abnormalities in hypospadiac male rats induced by maternal exposure to di-n-butyl phthalate (DBP). Toxicology 232, 286–293 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Martinez-Arguelles, D. B. & Papadopoulos, V. Prenatal phthalate exposure: epigenetic changes leading to lifelong impact on steroid formation. Andrology 4, 573–584 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Geens, T., Goeyens, L. & Covaci, A. Are potential sources for human exposure to bisphenol-A overlooked? Int. J. Hyg. Environ. Health 214, 339–347 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bernier, M. R. & Vandenberg, L. N. Handling of thermal paper: implications for dermal exposure to bisphenol A and its alternatives. PLoS ONE 12, e0178449 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Löfroth, M., Ghasemimehr, M., Falk, A. & von Steyern, P. V. Bisphenol A in dental materials — existence, leakage and biological effects. Heliyon 5, e01711 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Health Canada. Bisphenol A (BPA) in Canadians. Health Canada (2021).

  • ECHA (European Chemicals Agency. Bisphenols. ECHA (2021).

  • US Food and Drug Administration. Bisphenol A (BPA): use in food contact application. FDA.gov (2014).

  • Lawson, C. et al. Gene expression in the fetal mouse ovary is altered by exposure to low doses of bisphenol A. Biol. Reprod. 84, 79–86 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alonso-Magdalena, P. et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol. Cell. Endocrinol. 355, 201–207 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hafezi, S. A. & Abdel-Rahman, W. M. The endocrine disruptor bisphenol A (BPA) exerts a wide range of effects in carcinogenesis and response to therapy. Curr. Mol. Pharmacol. 12, 230–238 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. Anti-androgenic mechanisms of bisphenol A involve androgen receptor signaling pathway. Toxicology 387, 10–16 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • MacKay, H. & Abizaid, A. A plurality of molecular targets: the receptor ecosystem for bisphenol-A (BPA). Hormones Behav. 101, 59–67 (2018).

    Article 
    CAS 

    Google Scholar 

  • Fan, X., Katuri, G. P., Caza, A. A., Rasmussen, P. E. & Kubwabo, C. Simultaneous measurement of 16 bisphenol A analogues in house dust and evaluation of two sampling techniques. Emerg. Contam. 7, 1–9 (2021).

    Article 
    CAS 

    Google Scholar 

  • Zheng, J., Tian, L. & Bayen, S. Chemical contaminants in canned food and can-packaged food: a review. Crit. Rev. Food Sci. Nutr. 63, 2687–2718 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pelch, K. et al. A scoping review of the health and toxicological activity of bisphenol A (BPA) structural analogues and functional alternatives. Toxicology 424, 152235 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rajkumar, A. et al. Elucidation of the effects of bisphenol A and structural analogs on germ and steroidogenic cells using single cell high-content imaging. Toxicol. Sci. 180, 224–238 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Barra, N. G. et al. Increased gut serotonin production in response to bisphenol A structural analogs may contribute to their obesogenic effects. Am. J. Physiol. Endocrinol. Metab. 323, E80–E091 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Glüge, J. et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ. Sci. Process. Impacts 22, 2345–2373 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • EFSA Panel on Contaminants in the Food Chain (EFSA CONTAM Panel) Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 18, e06223 (2020).

    Article 

    Google Scholar 

  • Ding, N., Harlow, S. D., Randolph, J. F. Jr, Loch-Caruso, R. & Park, S. K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Update 26, 724–752 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • National Academies of Sciences, Engineering, and Medicine. Guidance on PFAS exposure, testing, and clinical follow-up. The National Academies Press (2022).

  • Buck Louis, G. M. et al. Endocrine disruptors and neonatal anthropometry, NICHD fetal growth studies — singletons. Environ. Int. 119, 515–526 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Boyd, R. I. et al. Toward a mechanistic understanding of poly-and perfluoroalkylated substances and cancer. Cancers 14, 2919 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Das, K. P. et al. Perfluoroalkyl acids-induced liver steatosis: effects on genes controlling lipid homeostasis. Toxicology 378, 37–52 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dixit, G. & Prabhu, A. The pleiotropic peroxisome proliferator activated receptors: regulation and therapeutics. Exp. Mol. Pathol. 124, 104723 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zhao, B. et al. Exposure to perfluorooctane sulfonate in utero reduces testosterone production in rat fetal Leydig cells. PLoS ONE 9, e78888 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sonkar, R., Kay, M. K. & Choudhury, M. PFOS modulates interactive epigenetic regulation in first-trimester human trophoblast cell line HTR-8/SVneo. Chem. Res. Toxicol. 32, 2016–2027 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rashid, F., Ramakrishnan, A., Fields, C. & Irudayaraj, J. Acute PFOA exposure promotes epigenomic alterations in mouse kidney tissues. Toxicol. Rep. 7, 125–132 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Blum, A. et al. The Madrid statement on poly-and perfluoroalkyl substances (PFASs). Environ. Health Perspect. 123, A107–A111 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Underwriters’ Laboratories. UL 94 Tests for flammability of plastic materials for parts in devices and appliances. Underwriters’ Laboratories (2007).

  • Van der Veen, I. & de Boer, J. Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere 88, 1119–1153 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Hoffman, K., Garantziotis, S., Birnbaum, L. S. & Stapleton, H. M. Monitoring indoor exposure to organophosphate flame retardants: hand wipes and house dust. Environ. Health Perspect. 123, 160–165 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Wang, X., Hales, B. F. & Robaire, B. Effects of flame retardants on ovarian function. Reprod. Toxicol. 102, 10–23 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Harley, K. G. et al. PBDE concentrations in women’s serum and fecundability. Environ. Health Perspect. 118, 699–704 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lefèvre, P. L. et al. Exposure of female rats to an environmentally relevant mixture of brominated flame retardants targets the ovary, affecting folliculogenesis and steroidogenesis. Biol. Reprod. 94, 1–11 (2016).

    Article 

    Google Scholar 

  • Allais, A. et al. In utero and lactational exposure to flame retardants disrupts rat ovarian follicular development and advances puberty. Toxicol. Sci. 175, 197–209 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dingemans, M. M., van den Berg, M. & Westerink, R. H. Neurotoxicity of brominated flame retardants:(in) direct effects of parent and hydroxylated polybrominated diphenyl ethers on the (developing) nervous system. Environ. Health Perspect. 119, 900–907 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hales, B. F. & Robaire, B. Effects of brominated and organophosphate ester flame retardants on male reproduction. Andrology 8, 915–923 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Blum, A. et al. Organophosphate ester flame retardants: are they a regrettable substitution for polybrominated diphenyl ethers? Environ. Sci. Technol. Lett. 6, 638–649 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Percy, Z. et al. Concentrations and loadings of organophosphate and replacement brominated flame retardants in house dust from the home study during the PBDE phase-out. Chemosphere 239, 124701 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Peng, Y. et al. Review on typical organophosphate diesters (di-OPEs) requiring priority attention: formation, occurrence, toxicological, and epidemiological studies. J. Hazard. Mater. 460, 132426 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, X. et al. The effects of organophosphate esters used as flame retardants and plasticizers on granulosa, Leydig, and spermatogonial cells analyzed using high-content imaging. Toxicol. Sci. 186, 269–287 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z., Robaire, B. & Hales, B. F. The organophosphate esters used as flame retardants and plasticizers affect H295R adrenal cell phenotypes and functions. Endocrinology 164, bqad119 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, X., Lee, E., Hales, B. F. & Robaire, B. Organophosphate esters disrupt steroidogenesis in kgn human ovarian granulosa cells. Endocrinology 164, bqad089 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hartmann, N. B. et al. Are we speaking the same language? Recommendations for a definition and categorization framework for plastic debris. Environ. Sci. Technol. 53, 1039–1047 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Anagnosti, L., Varvaresou, A., Pavlou, P., Protopapa, E. & Carayanni, V. Worldwide actions against plastic pollution from microbeads and microplastics in cosmetics focusing on European policies. Has the issue been handled effectively? Mar. Pollut. Bull. 162, 111883 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62, 2588–2597 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amec Foster Wheeler Environment and Infrastructure UK Limited. Intentionally added microplastics in products; final report. European Commission (2017).

  • Wiesinger, H., Wang, Z. & Hellweg, S. Deep dive into plastic monomers, additives, and processing aids. Environ. Sci. Technol. 55, 9339–9351 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Field, D. T. et al. Microplastics in the surgical environment. Environ. Int. 170, 107630 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jenner, L. C. et al. Detection of microplastics in human lung tissue using μFTIR spectroscopy. Sci. Total Environ. 831, 154907 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ippoliti, F. et al. Comparative spallation performance of silicone versus Tygon extracorporeal circulation tubing. Interact. Cardiovasc. Thorac. Surg. 29, 685–692 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Barron, D. et al. Particle spallation induced by blood pumps in hemodialysis tubing sets. Artif. Organs 10, 226–235 (1986).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Bommer, J., Ritz, E. & Waldherr, R. Silicone-induced splenomegaly: treatment of pancytopenia by splenectomy in a patient on hemodialysis. N. Engl. J. Med. 305, 1077–1079 (1981).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Teo, A. J. T. et al. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng. 2, 454–472 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Tarafdar, A., Xie, J., Gowen, A., O’Higgins, A. C. & Xu, J. L. Advanced optical photothermal infrared spectroscopy for comprehensive characterization of microplastics from intravenous fluid delivery systems. Sci. Total Environ. 929, 172648 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Passos, R. S. et al. Microplastics and nanoplastics in haemodialysis waters: emerging threats to be in our radar. Environ. Toxicol. Pharmacol. 102, 104253 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Shastri, P. V. Toxicology of polymers for implant contraceptives for women. Contraception 65, 9–13 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pothupitiya, J. U., Zheng, C. & Saltzman, W. M. Synthetic biodegradable polyesters for implantable controlled-release devices. Expert. Opin. Drug Deliv. 19, 1351–1364 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schwabl, P. et al. Detection of various microplastics in human stool: a prospective case series. Ann. Intern. Med. 171, 453–457 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Amato-Lourenço, L. F. et al. Presence of airborne microplastics in human lung tissue. J. Hazard. Mater. 416, 126124 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ibrahim, Y. S. et al. Detection of microplastics in human colectomy specimens. JGH Open 5, 116–121 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Horvatits, T. et al. Microplastics detected in cirrhotic liver tissue. eBioMedicine 82, 104147 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ragusa, A. et al. Plasticenta: first evidence of microplastics in human placenta. Environ. Int. 146, 106274 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ragusa, A. et al. Raman microspectroscopy detection and characterisation of microplastics in human breastmilk. Polymers 14, 2700 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, Y. et al. Detection of various microplastics in patients undergoing cardiac surgery. Environ. Sci. Technol. 57, 10911–10918 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Rotchell, J. M. et al. Detection of microplastics in human saphenous vein tissue using μFTIR: a pilot study. PLoS ONE 18, e0280594 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, W., van der Voet, E., Huppes, G. & Zhang, Y. Comparative life cycle assessments of incineration and non-incineration treatments for medical waste. Int. J. Life Cycle Assess. 14, 114–121 (2009).

    Article 
    CAS 

    Google Scholar 

  • Pironti, C. et al. First evidence of microplastics in human urine, a preliminary study of intake in the human body. Toxics 11, 40 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, Z. et al. Identification and analysis of microplastics in human lower limb joints. J. Hazard. Mater. 461, 132640 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Danopoulos, E., Twiddy, M., West, R. & Rotchell, J. M. A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. J. Hazard. Mater. 427, 127861 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zolotova, N., Kosyreva, A., Dzhalilova, D., Fokichev, N. & Makarova, O. Harmful effects of the microplastic pollution on animal health: a literature review. PeerJ 10, e13503 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dewan, P. A., Stefanek, W. & Byard, R. W. Long-term histological response to intravenous Teflon and silicone in a rat model. Pediatric Surg. Int. 10, 129–133 (1995).

    Article 

    Google Scholar 

  • Luo, T. et al. Maternal polystyrene microplastic exposure during gestation and lactation altered metabolic homeostasis in the dams and their F1 and F2 offspring. Environ. Sci. Technol. 53, 10978–10992 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hou, B., Wang, F., Liu, T. & Wang, Z. Reproductive toxicity of polystyrene microplastics: in vivo experimental study on testicular toxicity in mice. J. Hazard. Mater. 405, 124028 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Jin, H. et al. Polystyrene microplastics induced male reproductive toxicity in mice. J. Hazard. Mater. 401, 123430 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • An, R. et al. Polystyrene microplastics cause granulosa cells apoptosis and fibrosis in ovary through oxidative stress in rats. Toxicology 449, 152665 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z. et al. Polystyrene microplastics induced female reproductive toxicity in mice. J. Hazard. Mater. 424, 127629 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Deng, Y. et al. Microplastics release phthalate esters and cause aggravated adverse effects in the mouse gut. Environ. Int. 143, 105916 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eisenakh, I. A., Bondarev, O. I., Mozes, V. G., Lapii, G. A. & Lushnikova, E. L. Features of in vitro degradation and physical properties of a biopolymer and in vivo tissue reactions in comparison with polypropylene. Bull. Exp. Biol. Med. 170, 88–92 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Spiwak, A. J., Horbal, A., Leatherbury, R. & Hansford, D. J. Extracorporeal tubing in the roller pump raceway: physical changes and particulate generation. J. Extra Corpor. Technol. 40, 188–192 (2008).

    Article 
    PubMed 

    Google Scholar 

  • Orenstein, J. M., Sato, N., Aaron, B., Buchholz, B. & Bloom, S. Microemboli observed in deaths following cardiopulmonary bypass surgery: silicone antifoam agents and polyvinyl chloride tubing as sources of emboli. Hum. Pathol. 13, 1082–1090 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Brewer, A., Dror, I. & Berkowitz, B. The mobility of plastic nanoparticles in aqueous and soil environments: a critical review. ACS Est. Water 1, 48–57 (2021).

    Article 
    CAS 

    Google Scholar 

  • Torres-Ruiz, M. et al. Neurotoxicity and endocrine disruption caused by polystyrene nanoparticles in zebrafish embryo. Sci. Total Environ. 874, 162406 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Amereh, F. et al. Thyroid endocrine status and biochemical stress responses in adult male Wistar rats chronically exposed to pristine polystyrene nanoplastics. Toxicol. Res. 8, 953–963 (2019).

    Article 
    CAS 

    Google Scholar 

  • Valdez-Carrillo, M., Abrell, L., Ramírez-Hernández, J., Reyes-López, J. A. & Carreón-Diazconti, C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. Environ. Sci. Pollut. Res. Int. 27, 44863–44891 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wilkinson, J. L. et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl Acad. Sci. USA 119, e2113947119 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Niemi, L. et al. Assessing hospital impact on pharmaceutical levels in a rural ‘source-to-sink’ water system. Sci. Total Environ. 737, 139618 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Aydın, S., Ulvi, A., Bedük, F. & Aydın, M. E. Pharmaceutical residues in digested sewage sludge: occurrence, seasonal variation and risk assessment for soil. Sci. Total Environ. 817, 152864 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Daouk, S. et al. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents. J. Environ. Manag. 160, 324–332 (2015).

    Article 
    CAS 

    Google Scholar 

  • Ort, C., Lawrence, M. G., Rieckermann, J. & Joss, A. Sampling for pharmaceuticals and personal care products (ppcps) and illicit drugs in wastewater systems: are your conclusions valid? A critical review. Environ. Sci. Technol. 44, 6024–6035 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Langford, K. H. & Thomas, K. V. Determination of pharmaceutical compounds in hospital effluents and their contribution to wastewater treatment works. Environ. Int. 35, 766–770 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hernández-Tenorio, R., González-Juárez, E., Guzmán-Mar, J. L., Hinojosa-Reyes, L. & Hernández-Ramírez, A. Review of occurrence of pharmaceuticals worldwide for estimating concentration ranges in aquatic environments at the end of the last decade. J. Hazard. Mater. Adv. 8, 100172 (2022).

    Google Scholar 

  • Spilsbury, F., Kisielius, V., Bester, K. & Backhaus, T. Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. Sci. Total Environ. 906, 167440 (2024).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • De Falco, M. & Laforgia, V. Combined effects of different endocrine-disrupting chemicals (edcs) on prostate gland. Int. J. Environ. Res. Public Health 18, 9772 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sachs, H. C. The transfer of drugs and therapeutics into human breast milk: an update on selected topics. Pediatrics 132, e796–e809 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Newbold, R. R., Padilla-Banks, E. & Jefferson, W. N. Adverse effects of the model environmental estrogen diethylstilbestrol are transmitted to subsequent generations. Endocrinology 147, S11–S17 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fu, Q., Sanganyado, E., Ye, Q. & Gan, J. Meta-analysis of biosolid effects on persistence of triclosan and triclocarban in soil. Environ. Pollut. 210, 137–144 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, M. et al. Multi-class determination of steroid hormones and antibiotics in fatty hotpot ingredients by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry. J. Pharm. Biomed. Anal. 171, 193–203 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Álvarez-Muñoz, D. et al. Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. Environ. Res. 143, 56–64 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Godfray, H. C. J. et al. A restatement of the natural science evidence base on the effects of endocrine disrupting chemicals on wildlife. Proc. Biol. Sci. 286, 20182416 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ebele, A. J., Abou-Elwafa Abdallah, M. & Harrad, S. Pharmaceuticals and personal care products (PPCPs) in the freshwater aquatic environment. Emerg. Contam. 3, 1–16 (2017).

    Article 

    Google Scholar 

  • Kasprzyk-Hordern, B., Dinsdale, R. M. & Guwy, A. J. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Res. 42, 3498–3518 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Adelakun, S. A., Ukwenya, V. O. & Akintunde, O. W. Vitamin B12 ameliorate tramadol-induced oxidative stress, endocrine imbalance, apoptosis and NO/iNOS/NF-κB expression in Sprague Dawley rats through regulatory mechanism in the pituitary–gonadal axis. Tissue Cell 74, 101697 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sehonova, P. et al. Effects of antidepressants with different modes of action on early life stages of fish and amphibians. Environ. Pollut. 254, 112999 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Munro, K. et al. Evaluation of combined sewer overflow impacts on short-term pharmaceutical and illicit drug occurrence in a heavily urbanised tidal river catchment (London, UK). Sci. Total Environ. 657, 1099–1111 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Paulis, M. G., Hafez, E. M. & El-Tahawy, N. F. Toxicity and postwithdrawal effects of ketamine on the reproductive function of male albino rats: hormonal, histological, and immunohistochemical study. Hum. Exp. Toxicol. 39, 1054–1065 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Reichert, J. F., Souza, D. M. & Martins, A. F. Antipsychotic drugs in hospital wastewater and a preliminary risk assessment. Ecotoxicol. Environ. Saf. 170, 559–567 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Frédéric, O. & Yves, P. Pharmaceuticals in hospital wastewater: their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere 115, 31–39 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Ilgin, S. The adverse effects of psychotropic drugs as an endocrine disrupting chemicals on the hypothalamic-pituitary regulation in male. Life Sci. 253, 117704 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Elizalde-Velázquez, G. A. & Gómez-Oliván, L. M. Occurrence, toxic effects and removal of metformin in the aquatic environments in the world: recent trends and perspectives. Sci. Total Environ. 702, 134924 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Tavlo, M. et al. Hypothesis: metformin is a potential reproductive toxicant. Front. Endocrinol. 13, 1000872 (2022).

    Article 

    Google Scholar 

  • United Nations. The United Nations World Water Development Report 2021: Valuing Water. UNESCO (2021).

  • European Commission Communication and Information Resource Centre for Administrations. Drinking water parameter cooperation project. European Commission (2017).

  • Karnjanapiboonwong, A. et al. Occurrence of PPCPs at a wastewater treatment plant and in soil and groundwater at a land application site. Water Air Soil Pollut. 216, 257–273 (2011).

    Article 
    CAS 

    Google Scholar 

  • Weatherly, L. M. & Gosse, J. A. Triclosan exposure, transformation, and human health effects. J. Toxicol. Environ. Health B 20, 447–469 (2017).

    Article 
    CAS 

    Google Scholar 

  • Rochester, J. R., Bolden, A. L., Pelch, K. E. & Kwiatkowski, C. F. Potential developmental and reproductive impacts of triclocarban: a scoping review. J. Toxicol. 2017, 9679738 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geer, L. A. et al. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. J. Hazard. Mater. 323, 177–183 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wei, L. et al. Triclosan/triclocarban levels in maternal and umbilical blood samples and their association with fetal malformation. Clin. Chim. Acta 466, 133–137 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parveen, N., Chowdhury, S. & Goel, S. Environmental impacts of the widespread use of chlorine-based disinfectants during the COVID-19 pandemic. Environ. Sci. Pollut. Res. Int. 29, 85742–85760 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pérez-Albaladejo, E. et al. Genotoxicity and endocrine disruption potential of haloacetic acids in human placental and lung cells. Sci. Total Environ. 879, 162981 (2023).

    Article 
    PubMed 

    Google Scholar 

  • MacNeill, A. J., McGain, F. & Sherman, J. D. Planetary health care: a framework for sustainable health systems. Lancet Planet. Health 5, e66–e68 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Galaviz, K. I., Narayan, K. M. V., Lobelo, F. & Weber, M. B. Lifestyle and the prevention of type 2 diabetes: a status report. Am. J. Lifestyle Med. 12, 4–20 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Sharma, R., Biedenharn, K. R., Fedor, J. M. & Agarwal, A. Lifestyle factors and reproductive health: taking control of your fertility. Reprod. Biol. Endocrinol. 11, 66 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rogers, N. T. et al. Changes in soft drinks purchased by British households associated with the UK soft drinks industry levy: a controlled interrupted time series analysis. BMJ Open 13, e077059 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haw, J. S. et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern. Med. 177, 1808–1817 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Black, L. J., Seamans, K. M., Cashman, K. D. & Kiely, M. An updated systematic review and meta-analysis of the efficacy of vitamin D food fortification. J. Nutr. 142, 1102–1108 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kruger, M. C. et al. The effect of a fortified milk drink on vitamin D status and bone turnover in post-menopausal women from South East Asia. Bone 46, 759–767 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • The Endocrine Society. Advocacy and policy. The Endocrine Society (2022).

  • Di Renzo, G. C. et al. International Federation of Gynecology and Obstetrics opinion on reproductive health impacts of exposure to toxic environmental chemicals. Int. J. Gynaecol. Obstet. 131, 219–225 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Appelberg, K. et al. Cost-effectiveness of newborn screening for phenylketonuria and congenital hypothyroidism. J. Pediatr. 256, 38–43 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Haque, M. M. et al. Cost-effectiveness of diagnosis and treatment of early gestational diabetes mellitus: economic evaluation of the TOBOGM study, an international multicenter randomized controlled trial. eClinicalMedicine 71, 102610 (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, D., Shi, Q., Liu, C., Sun, Q. & Zeng, X. Effects of endocrine-disrupting heavy metals on human health. Toxics 11, 322 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sasaki, T. et al. Hospital-based screening to detect patients with cadmium nephropathy in cadmium-polluted areas in Japan. Environ. Health Prev. Med. 24, 8 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Horiguchi, H. et al. Latest status of cadmium accumulation and its effects on kidneys, bone, and erythropoiesis in inhabitants of the formerly cadmium-polluted Jinzu River Basin in Toyama, Japan, after restoration of rice paddies. Int. Arch. Occup. Environ. Health 83, 953–970 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lagerweij, G. R. et al. Impact of preventive screening and lifestyle interventions in women with a history of preeclampsia: a micro-simulation study. Eur. J. Prev. Cardiol. 27, 1389–1399 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mortimer, F., Isherwood, J., Wilkinson, A. & Vaux, E. Sustainability in quality improvement: redefining value. Future Healthc. J. 5, 88–93 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samudera, W. S., Efendi, F. & Indarwati, R. Effect of community and peer support based healthy lifestyle program (CP-HELP) on self care behavior and fasting blood glucose in patient with type 2 diabetes mellitus. J. Diabetes Metab. Disord. 20, 193–199 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, D., Elliott, E. J. & Naughton, G. A. Exercise for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2006, CD002968 (2006).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rakhra, V., Galappaththy, S. L., Bulchandani, S. & Cabandugama, P. K. Obesity and the Western diet: how we got here. Mo. Med. 117, 536–538 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pradhan, P., Reusser, D. E. & Kropp, J. P. Embodied greenhouse gas emissions in diets. PLoS ONE 8, e62228 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gryka, A., Broom, J. & Rolland, C. Global warming: is weight loss a solution? Int. J. Obes. 36, 474–476 (2012).

    Article 
    CAS 

    Google Scholar 

  • Willett, W. et al. Food in the anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Lin, X., Wang, S. & Huang, J. The association between the EAT–Lancet diet and diabetes: a systematic review. Nutrients 15, 4462 (2023).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ehrenkranz, J. Point-of-care endocrine diagnostics. Endocrinol. Metab. Clin. North. Am. 46, 615–630 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Bell, C. et al. Clinic for multimorbidity: an innovative approach to integrate general practice and specialized health care services. Int. J. Integr. Care 23, 25 (2023).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ongaro, A. E. et al. Engineering a sustainable future for point-of-care diagnostics and single-use microfluidic devices. Lab Chip 22, 3122–3137 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Goodwin, V. A. et al. Implementing a patient-initiated review system for people with rheumatoid arthritis: a prospective, comparative service evaluation. J. Eval. Clin. Pract. 22, 439–445 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Kershaw, V. F., Chainrai, M. & Radley, S. C. Patient initiated follow up in obstetrics and gynaecology: a systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 272, 123–129 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Turley, M. et al. Use of electronic health records can improve the health care industry’s environmental footprint. Health Aff. 30, 938–946 (2011).

    Article 

    Google Scholar 

  • Purohit, A., Smith, J. & Hibble, A. Does telemedicine reduce the carbon footprint of healthcare? A systematic review. Future Healthc. J. 8, e85–e91 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, E. Y. et al. Environmental emissions reduction of a preoperative evaluation center utilizing telehealth screening and standardized preoperative testing guidelines. Resour. Conserv. Recycling 171, 105652 (2021).

    Article 
    CAS 

    Google Scholar 

  • Grealey, J. et al. The carbon footprint of bioinformatics. Mol. Biol. Evol. 39, msac034 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dunne, H., Jones, A. & Okorie, M. Combatting climate change using education and training in pharmacology and therapeutics. Br. J. Clin. Pharmacol. 89, 1518–1520 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Klonoff, D. C. et al. The diabetes technology society green diabetes initiative. J. Diabetes Sci. Technol. 14, 507–512 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Keil, M., Viere, T., Helms, K. & Rogowski, W. The impact of switching from single-use to reusable healthcare products: a transparency checklist and systematic review of life-cycle assessments. Eur. J. Public. Health 33, 56–63 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Sanchez, S. A., Eckelman, M. J. & Sherman, J. D. Environmental and economic comparison of reusable and disposable blood pressure cuffs in multiple clinical settings. Resour. Conserv. Recycling 155, 104643 (2020).

    Article 

    Google Scholar 

  • Rizan, C., Bhutta, M. F., Reed, M. & Lillywhite, R. The carbon footprint of waste streams in a UK hospital. J. Clean. Prod. 286, 125446 (2021).

    Article 
    CAS 

    Google Scholar 

  • Lopes, D. G., Duarte, I. A., Antunes, M. & Fonseca, V. F. Effects of antidepressants in the reproduction of aquatic organisms: a meta-analysis. Aquat. Toxicol. 227, 105569 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Petry, S. F., Petry, F. W., Petry, J. K., Gäth, S. & Heinemann, L. Diabetes technology and waste: a real-world study in a specialized practice in Germany. J. Diabetes Sci. Technol. (2024).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Poudel, R. S. et al. Assessment of insulin injection practice among diabetes patients in a tertiary healthcare centre in Nepal: a preliminary study. J. Diabetes Res. 2017, 8648316 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ishtiaq, O. et al. Disposal of syringes, needles, and lancets used by diabetic patients in Pakistan. J. Infect. Public Health 5, 182–188 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Atukorala, K. R., Wickramasinghe, S. I., Sumanasekera, R. D. N. & Wickramasinghe, K. H. Practices related to sharps disposal among diabetic patients in Sri Lanka. Asia Pac. Fam. Med. 17, 12 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furth, R., Audrey, A. & Gumti, K. Safer insulin needle use and disposal. Int. J. Infect. Control. (2009).

    Article 

    Google Scholar 

  • Anastas, P. T. & Zimmerman, J. B. Design through the 12 principles of green engineering. Environ. Sci. Technol. 37, 94A–101A (2003).

    Article 
    PubMed 

    Google Scholar 

  • Fiksel, J. Design for Environment: a Guide to Sustainable Product Development 2nd edn (McGraw-Hill Education, 2009).

  • De Soete, W., Jimenez-Gonzalez, C., Dahlin, P. & Dewulf, J. Challenges and recommendations for environmental sustainability assessments of pharmaceutical products in the healthcare sector. Green. Chem. 90, 41 (2017).

    Google Scholar 

  • Milanesi, M., Runfola, A. & Guercini, S. Pharmaceutical industry riding the wave of sustainability: review and opportunities for future research. J. Clean. Prod. 261, 121204 (2020).

    Article 

    Google Scholar 

  • Rodríguez-Serin, H. et al. Literature review: evaluation of drug removal techniques in municipal and hospital wastewater. Int. J. Environ. Res. Public. Health 19, 13105 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mauch, J., Kronsbein, A. L., Putschew, A., Lewandowski, J. & Hilt, S. Periphyton in urban freshwater facilitates transformation of trace organic compounds: a case study on iodinated contrast media. Front. Environ. Sci. 11, 1142591 (2023).

    Article 

    Google Scholar 

  • Martinez-Vaz, B. M. et al. Wastewater bacteria remediating the pharmaceutical metformin: genomes, plasmids and products. Front. Bioeng. Biotechnol. 10, 1086261 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nguyen, K. T. et al. Green diabetes summit 2021. J. Diabetes Sci. Technol. 16, 233–247 (2022).

    Article 
    PubMed 

    Google Scholar 

  • World Health Organization. Alliance for transformative action on climate and health (ATACH). World Health Organization (2022).

  • Arasaradnam, R. Our new campaign: sustainability and climate change. Royal College of Physicians (2023).

  • Planetary Health Report Card. 2022–2023 Summary Report; an international health student initiative. Planetary Health Report Card (2023).

  • Sherman, J. D. et al. Net zero healthcare: a call for clinician action. Br. Med. J. 374, n1323 (2021).

    Article 

    Google Scholar 

  • Gordon, D. & Zuegge, K. L. Greenwashing in health care marketing. ASA Monit. 84, 18–21 (2020).

    Article 

    Google Scholar 

  • Li, D. et al. Anticancer drugs in the aquatic ecosystem: environmental occurrence, ecotoxicological effect and risk assessment. Environ. Int. 153, 106543 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Palmer, B. D. & Palmer, S. K. Vitellogenin induction by xenobiotic estrogens in the red-eared turtle and African clawed frog. Environ. Health Perspect. 103, 19–25 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Williams, T. D. et al. Evaluation of the reproductive effects of tamoxifen citrate in partial and full life-cycle studies using fathead minnows (Pimephales promelas). Environ. Toxicol. Chem. 26, 695–707 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sun, L., Zha, J., Spear, P. A. & Wang, Z. Tamoxifen effects on the early life stages and reproduction of Japanese medaka (Oryzias latipes). Environ. Toxicol. Pharmacol. 24, 23–29 (2007).

    Article 
    PubMed 

    Google Scholar 

  • Pinto, C. A., Fonseca, B. M. & Sá, S. I. Effects of chronic tamoxifen treatment in female rat sexual behaviour. Heliyon 8, e12362 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Diaz-Camal, N., Cardoso-Vera, J. D., Islas-Flores, H., Gómez-Oliván, L. M. & Mejía-García, A. Consumption and ocurrence of antidepressants (SSRIs) in pre- and post-COVID-19 pandemic, their environmental impact and innovative removal methods: a review. Sci. Total Environ. 829, 154656 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ford, A. T. & Fong, P. P. The effects of antidepressants appear to be rapid and at environmentally relevant concentrations. Environ. Toxicol. Chem. 35, 794–798 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Weinberger, J. II & Klaper, R. Environmental concentrations of the selective serotonin reuptake inhibitor fluoxetine impact specific behaviors involved in reproduction, feeding and predator avoidance in the fish Pimephales promelas (fathead minnow). Aquat. Toxicol. 151, 77–83 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Whitlock, S. E., Pereira, M. G., Shore, R. F., Lane, J. & Arnold, K. E. Environmentally relevant exposure to an antidepressant alters courtship behaviours in a songbird. Chemosphere 211, 17–24 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Pawluski, J. L. Perinatal selective serotonin reuptake inhibitor exposure: impact on brain development and neural plasticity. Neuroendocrinology 95, 39–46 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sengar, A. & Vijayanandan, A. Comprehensive review on iodinated X-ray contrast media: complete fate, occurrence, and formation of disinfection byproducts. Sci. Total Environ. 769, 144846 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nowak, A., Pacek, G. & Mrozik, A. Transformation and ecotoxicological effects of iodinated X-ray contrast media. Rev. Environ. Sci. Biotechnol. 19, 337–354 (2020).

    Article 

    Google Scholar 

  • Andreucci, M., Solomon, R. & Tasanarong, A. Side effects of radiographic contrast media: pathogenesis, risk factors, and prevention. Biomed. Res. Int. 2014, 741018 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Manso, J. et al. Safety and efficacy of prophylactic treatment for hyperthyroidism induced by iodinated contrast media in a high-risk population. Front. Endocrinol. 14, 1154251 (2023).

    Article 

    Google Scholar 

  • Koagouw, W., Arifin, Z., Olivier, G. W. J. & Ciocan, C. High concentrations of paracetamol in effluent dominated waters of Jakarta Bay, Indonesia. Mar. Pollut. Bull. 169, 112558 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xia, L., Zheng, L. & Zhou, J. L. Effects of ibuprofen, diclofenac and paracetamol on hatch and motor behavior in developing zebrafish (Danio rerio). Chemosphere 182, 416–425 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ciślak, M., Kruszelnicka, I., Zembrzuska, J. & Ginter-Kramarczyk, D. Estrogen pollution of the European aquatic environment: a critical review. Water Res. 229, 119413 (2023).

    Article 
    PubMed 

    Google Scholar 

  • Arlos, M. J. et al. Modeling the exposure of wild fish to endocrine active chemicals: potential linkages of total estrogenicity to field-observed intersex. Water Res. 139, 187–197 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mackuľak, T. et al. Hospital wastewaters treatment: fenton reaction vs. BDDE vs. ferrate(VI). Environ. Sci. Pollut. Res. 26, 31812–31821 (2019).

    Article 

    Google Scholar 

  • Bodík, M. et al. Searching for the correlations between the use of different groups of pharmaceuticals from wastewaters. Ecotoxicol. Environ. Saf. 228, 112973 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Zhao, Q. et al. Detection and characterization of microplastics in the human testis and semen. Sci. Total Environ. 877, 162713 (2023).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • link

    Leave a Reply

    Your email address will not be published. Required fields are marked *

    Copyright © All rights reserved. | Newsphere by AF themes.